1. [Kincaid and Cheney Problem 6.8#6] Show that the Hilbert matrix with elements
ai; = (i+j+ 1)t fori,j = 0,1,2,...,n — 1 is a Gram matrix for the functions
1z, 22,..., 2" L.

We define the inner product X
()= [ f@ot@)da
on the space of functions L? ([O, 1]; R) and note that
Lz 2z, ., 2" te LQ([O, 1]; R).
The corresponding Gram matrix has elements

1

1
i+j+1 N

xi+j+1‘1_
o 1+j+1

1
(x', 27) = / e dr =
0

which are the entries of the Hilbert matrix.



2. [Kincaid and Cheney Problem 6.8#8] In the three-term recurrence relation for the
orthogonal polynomials, assume that the inner product is

)= [ F@gu)

where w is an even function. Prove that a,, = 0 for all n. Prove that p,, is even if n
is even and that p,, is odd if n is odd.

By definition pg = 1 which is even. Moreover

_ (xpo, po) _ ffazz:dx _
<p07p0> fja ldx

and consequently p; = x — a3 = = is odd. It further follows that

_ (xp1,p1) ffax3 dx
ag =

— = —0.
(p1,p)  [°, x?dx

We now procede by induction which can be stated as follows:

Suppose pg is even if k is even and that pi is odd if k is odd for all
k < n, then p, is even if n is even and p,, is odd if n is odd.

Notice no matter whether k is even or odd that the function z(p (:C))2 is odd. This can
be seen by the following two equalities:

Case k is even: ) )
(—w)(pk(—x)) = —-f(Pk(w))

Case k is odd: )

(—2) (pe(—2))" = —2( = pr(2))” = —2(pi(2))

Therefore )

4 = <xpn—17pn—1> _ ffax(pn,ﬂac)) dx —0

<pn—17pn—1> fja (pn_l(l')> dx

and consequently

() = (T — an)pn—1(z) = bppn—2(2)xpn—1(z) — bppn—2(x).
We now consider the case when n is even and n odd separately.

Case n is odd: By the induction hypothesis p,,_1 is even and p,_; is odd. It follows that
xpn—1(x) is odd and therefore p, (z), being the sum of two odd functions, is again odd.

Case n is even: By the induction hypothesis p,,_1 is odd and p,,_1 is even. It follows that
Zpn—1(x) is even and therefore p,(z), being the sum of two even functions, is again even.

This completes the induction and the proof.



3. [Kincaid and Cheney Problem 6.8#21] Derive these Legendre polynomials:

3 3

p3(z) = 2° — 2
pa(z) =2t — S22 4+ 2
ps(z) = 2° — %0333 + %x

I wrote a Maple script to implement the calculation given as Theorem 5 in Kincaid and
Cheney on page 400. The script is

1 # Kincaid and Cheney Problem 6.8 # 21

2 # Written December 4 by Eric Olson for Math 761
3 restart;

4 kernel (printbytes=false):

5 12prod:=(f,g)->int (f*g,x=-1..1);

6 pl0]:=1;

7 a[1] :=12prod (x*p[0] ,p[0])/12prod(p[0],p[0]);

8 pl1]:=x-al1];

9 for n from 2 to 5 do

10 a[n] :=12prod (x*p[n-1],p[n-1])/12prod(p[n-1],p[n-11);
11 b[n] :=12prod (x*p[n-1],p[n-2]1)/12prod(p[n-2],p[n-21);
12 pln]:=sort(collect((x-al[n])*p[n-1]-b[nl*p[n-2],x));
13 od;

and the output is

N/ Maple 9.5 (IBM INTEL LINUX)
I\ |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004
\ MAPLE / All rights reserved. Maple is a trademark of
S > Waterloo Maple Inc.

| Type 7 for help.

# Kincaid and Cheney Problem 6.8 # 21
# Written December 4 by Eric Olson for Math 761
> restart;
> kernel (printbytes=false):
> 12prod:=(f,g)->int (f*g,x=-1..1);
1
/
I
12prod := (f, g) > | f g dx
I
/
-1
> plo]:=1;
plo] :=1

> al1]:=12prod(x*p[0],p[0])/12prod(p[0],p[0]);
af1] =0

> pl1]:=x-a[1];
pl1] := x

> for n from 2 to 5 do



> a[n] :=12prod(x*p[n-1],p[n-11)/12prod(p[n-1],p[n-11);
> b[n] :=12prod (x*p[n-1],p[n-21)/12prod(p[n-2],p[n-21);
> pln] :=sort(collect ((x-al[n])*p[n-1]-b[n]l*p[n-2],x));
> od;
af2] =0
b[2] := 1/3
2

pl2] :=x - 1/3
al3] :=0
b[3] := 4/15

3
pl3] :=x -3/5x

al4] := 0
b[4] := 9/35
4 2

pl4] :=x -6/7x + 3/35

a[s] := 0
16
b[5] := —-
63
5 3

pl5] :=x -10/9 x + 5/21 x

> quit
bytes used=753184, alloc=655240, time=0.10



4. [Kincaid and Cheney Problem 6.9#2] Find the best approximation of \/z by a first-
degree polynomial on the interval [0, 1].

In light of Corollary 2 in Kincaid and Cheney page 408 and Example 1 on the preceding
page we solve the following system of equations:

9(0) = f(0) =6
9(&) = f(§) = -4
(1) —f(1)=4¢
g'(&) = f'(§) =0

where g(z) = ax + b and f(z) = /x. The Maple script

1 # Kincaid and Cheney Problem 6.9 # 2
2 # Written December 4 by Eric Olson for Math 761
3 restart;

4 kernel (printbytes=false):

5 eql:=g(0)-£(0)=delta;

6 eq2:=g(xi)-f(xi)=-delta;

7 eq3:=g(1)-f(1)=delta;

8 eq4:=D(g) (xi)-D(£f) (xi)=0;

9 g:=x->ax*x+b;

10 f:=sqrt;

11 eqns:={eql,eq2,eq3,eqd};

12 S:=solve(eqns,{a,b,xi,deltal});

13 gl:=subs(S,g(x));

solves these equations. The best approximation is

flx)=2+1/8
which has a graph
1 ///////
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The Maple output follows:
IN~/1 Maple 9.5 (IBM INTEL LINUX)
._INI |/1_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004
\ MAPLE / All rights reserved. Maple is a trademark of
Sl > Waterloo Maple Inc.

| Type 7 for help.



Kincaid and Cheney Problem 6.9 # 2

Written December 4 by Eric Olson for Math 761
restart;

kernel (printbytes=false):
eql:=g(0)-f(0)=delta;

vV V. V ® %

eql := g(0) - £(0) = delta
> eq2:=g(xi)-f(xi)=-delta;
eq2 := g(xi) - f(xi) = -delta
> eq3:=g(1)-f(1)=delta;
eq3 := g(1) - £(1) = delta

> eq4:=D(g) (xi)-D(f) (xi)=0;
eq4 := D(g) (xi) - D(£f)(xi) =0

> gi=x—>a*xx+b;

g:=x->ax+hb
> f:=sqrt;
f := sqrt

> eqns:={eql,eq2,eq3,eq4};
equs :=

1/2 1

{b = delta, a xi + b - xi = —-delta, a + b - 1 = delta, a - —————- = 0}
1/2
2 xi

> S:=solve(eqns,{a,b,xi,deltal});
S :={b=1/8, a =1, xi

1/4, delta = 1/8}

> gl:=subs(S,g(x));
gl :=x + 1/8

> quit
bytes used=1419008, alloc=1179432, time=0.14



5. [Kincaid and Cheney Problem 6.9#3] Show that the subspaces in C[0, 1] spanned by
these sets are Haar subspaces:

A={1,2?% 2%}, B ={1,¢e", e*}, C={(z+2)"@x+3)H(x+4) '}

Let a + bz? + cx® be in the span of A. Claim that this element has at most two roots in
the interval [—1,1]. if ¢ = 0 then a + bx? clearly has at most two roots. If ¢ # 1 we may
consider the polynmial a + Sz + 22 were o = a/c and B = b/c. Suppose for contradiction
there were three distinct roots 0 < 1 < 9 < x3 < 1 such that

a+Br? 423 = (v —21)(x — 22)(z — 23)

= 2% — (21 4+ 2o + 23)2% + (2122 + 123 + Tox3)x — T 2273,

Equating coefficients we obtain 0 = x1xo+x1x3+2223 > 2223 > 0 which is a contradiction.

Let a + be® + ce?® be in the span of B. Writing w = e® we may consider the polynomial
a + bw + cw? which has at most 2 roots w; and ws. Since the function z — e* is injective
on [0, 1] there are at most two numbers z; and x5 such that w; = €*' and wy = €. It
follows that a + be® + ce?® = 0 has at most 2 solutions.

Let a(x+2) " +b(z+3) "' +c(x+4)~! be in the span of C. Finding a common denominator
shows this expression is equal to

a(x+3)(x+4)+b(x+2)(x+4)+ c(x+ 2)(z + 3) p(x)

(x+1)(z+2)(x+3) (x+1)(z+2)(x+3)

for some polynomial p(z) of degree less than or equal 2. Since p(x) has at most 2 roots
than a(z +2)~! + b(z + 3)~! + ¢(z +4)~! = 0 has at most 2 solutions.



6. [Kincaid and Cheney Problem 6.9#44] Show that the subspaces in C[—1, 1] spanned
by these sets are Haar subspaces:

A={1,27%2%}, B = {|z|, |z — 1]}, C={e" z+1}.

We consider again the equation zizs + x1x3 + 2223 = 0 from part A of the previous
problem and this equation has solutions such that —1 < x; < 29 < x3 < 1. In particular,
if o =1/2 and x3 = 1/3, then

—X273

1

To + X3

Therefore the span of A is not a Haar subspace.

Consider the function f(x) = 2|z| — |x — 1| in the span of B. Clearly f(1) =2—1=0 and
f(1/3) =2/3 —| —2/3| = 0 therefore B is not a Haar subspace.

Consider the function f(z) =1+ 2 — 3e®. Since

f(=1)= —ge_l <0
4
f0)=1-2>0

f(1)y=2- §e<4— %(2.7) <0,

then by the intermediate value property of continuous functions there must be points x;
and zo such that

—l<z; <0<z <1 and f(x1) = f(x2) = 0.

Therefore C' is not a Haar subspace.



7. [Kincaid and Cheney Problem 6.9#8] Prove the quadratic polynomial of best approx-
imation to the function coshx on the interval [—1,1] is a + bz? where b = cosh1 — 1
and a is obtained by simultaneously solving for a and ¢ in the system

2a =1+ cosht — t2b
sinh t = 2tb.

Define f(x) = coshzx. First we claim the quadratic polynomial that best approximates f
on the interval [—1, 1] is of the form a+bx?. Let F = {a+bz? : a,b € R}, G = {cx : v € R}
and P, = {a+ cx +bx? : a,b,c € R}. Let a, b and ¢ be chosen so that

Hf— (a+ca72+bac2)|| =min{|f—g|:9€ P}

Define fa(z) = coshx—(a+bx?). Since fo(x) is even then z € crit(f) implies —x € crit(fs)
and moreover fa(z) and fa(—z) have the same sign. Thus, there is no function in G that has
the same signs as fo on crit(f2). It follows that Kolmogorov’s Characterization Theorem
from Kincaid and Cheney page 407 implies || f2|| = dist(f2, G). In particular

Hf2 — (a+ cx? + bx2)|| = dist(f2, G) = || fo|

and therefore there is a function of the form a + bx? such that

If = (a+b2?)|| = min {||f — g]| : g € P}

Now make the change of variables y = y/z. To obtain the following equivalent minimization
problem: Find a + by that best approximates the function cosh ,/y on the interval [0, 1].

This problem is in the form covered by Corollary 2 from Kincaid and Cheney page 408 so
we may obtain the solution by solving the system of equations:

93(0) — f3(0) =9

g3(&) — f3(§) = =9
g3(1) — f3(1) =4
95(8) — f3(6) =0

where g3(y) = a + by and f3(y) = cosh /y. Simplifying obtains
a—1=9¢
a+ b — cosh /€ = —§
a+b—coshl=9

2b+/€ —sinh /€ = 0

Elimination of § from the 2nd and 3rd equation, setting ¢ = /€ and futher simplification

obtains the desired result
2a =1+ cosht — t?b

b=-coshl -1
sinh t = 2bt.



