
Math 702 Programming and Homework Assignment 2

The Viscous Burgers Equation

The viscous Burgers equation, see for example Chapter 14.3 in Iserles [1], is obtained by
coupling a diffusion term such as found in the heat equation with a conservation law rep-
resenting transport of a one-dimensional velocity profile by its own velocity. The resulting
equation may be written

ut + uux − εuxx = 0 (1)

where ε > 0. When ε = 0 the diffusion term drops out and the resulting conservation law
is simply known as Burgers equation. These equations were introduced by Bateman in
1915 and further studied by Burgers in 1948.

Harry Bateman left; Johannes Martinus Burgers right.

For simplicity we will consider the initial value problem on the real line with L-periodic
initial condition u0 such that

u0(x) = u0(x+ L) for all x ∈ R.

Since the initial L-periodicity is preserved by the dynamics of the viscous Burgers equa-
tion (1), then the resulting solution u(t, x) further satisfies

u(t, x) = u(t, x+ L) for all t ≥ 0 and x ∈ R.

An Energy Analysis of the Viscous Burgers Equation

In this section we will assume the viscous Burgers equation is well-posed. Thus, we suppose
the solution exists, is differentiable and depends continuously on the initial condition u0.
Note that the mathematical proof of this well-posedness relies critically on the fact that
ε > 0. In particular, when ε = 0 the resulting solution u(t, x) is known to develop shocks
or jump discontinuities in finite time, even if the initial condition is infinitely smooth.

We begin our analysis by multiplying equation (1) through by u and integrating over
the fundamental domain [0, L] in space. Interchanging the time derivative with the spatial
integral yields ∫ L

0

uut =

∫ L

0

1

2

∂u2

∂t
=

1

2

d

dt

∫ L

0

u2
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where the interchange of the respective limiting processes may be justified by the already
assumed differentiability of the solution u(t, x). We remark that the partial derivatives in
time may be written as regular derivatives when they are moved outside because the value
of the integrated function does not depend on x.

Integrating by parts and using the L-periodicity of u implies∫ L

0

u2ux = u3
∣∣∣L
0
−

∫ L

0

2u2ux = −
∫ L

0

2u2ux.

Therefore, ∫ L

0

u2ux = 0.

The fact the nonlinear term cancels out in the above integral is not surprising but merely
a confirmation that this part of the equation came from a conservation law.

A similar treatment of the viscous term yields

−ε

∫ L

0

uuxx = −εuux

∣∣∣L
0
+ ε

∫ L

0

u2
x = ε

∫ L

0

u2
x.

This term will later be estimated by what is known as the Poincaré inequality.
Before that we summarize what we have obtained by combining the above calculations

to obtain the energy equality

1

2

d

dt

∫ L

0

u2 + ε

∫ L

0

u2
x = 0. (2)

The reason this is called an energy equality is two-fold. First, upon remembering that u
represents a velocity and that kinetic energy is one-half mass times velocity squared, the
integral

EK =
1

2

∫ L

0

u2

then represents a sum proportional to the physical kinetic energy. On the other hand,
mathematically setting ε = 0 results in dEK/dt = 0, which shows in the absence of viscous
dissipation that EK is constant.

We are now ready to continue our analysis by using

Poincaré’s Inequality. Let f :R → R be a continuously differentiable function. It holds
that ∫ L

0

|f(x)− V |2dx ≤ L2

∫ L

0

|f ′(x)|2dx where V =
1

L

∫ L

0

f(x)dx.

Proof. By the intermediate value theorem there is a point s ∈ [0, L] such that f(s) = V .
Now, by the Fundamental Theorem of Calculus followed by the Cauchy–Schwarz inequality
we have for x ∈ [0, L] that

|f(x)− V | = |f(x)− f(s)| =
∣∣∣ ∫ x

s

f ′(ξ)dξ
∣∣∣

≤
∣∣∣ ∫ x

s

dξ
∣∣∣1/2∣∣∣ ∫ x

s

|f ′(ξ)|2dξ
∣∣∣1/2 ≤ L1/2

∣∣∣ ∫ L

0

|f ′(ξ)|2dξ
∣∣∣1/2.
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Squaring both sides and integrating in x now obtains∫ L

0

|f(x)− V |2dx ≤ L

∫ L

0

∫ L

0

|f ′(ξ)|2dξ dx = L2

∫ L

0

|f ′(x)|2dx.

This finishes the proof of the inequality. ////

To finish out energy analysis of the viscous Burgers equation define

Y =

∫ L

0

|u− V |2 where V =
1

L

∫ L

0

u

Since u is L-periodic, so are its derivatives. Therefore, integrating the viscous Burgers
equation (1) yields

d

dt

∫ L

0

u =

∫ L

0

ut =

∫ L

0

(−uux + εuxx) =
(
− 1

2
u2 + εux

)∣∣∣∣L
0

= 0

Consequently, the average value V of u doesn’t depend on time and is therefore constant.
We obtain

dY

dt
=

d

dt

∫ L

0

|u− V |2 =
d

dt

∫ L

0

(u2 − 2V u+ V 2)

=
d

dt

(∫ L

0

u2 + LV 2
)
=

d

dt

∫ L

0

u2.

Taking f(x) = u(t, x) in Poincaré’s inequality and substituting into (2) results in the
differential inequality

1

2

dY

dt
+

ε

L2
Y ≤ 0. (3)

Multiply by µ = exp(2εL−2t) and integrate over [0, T ] to obtain Y (T ) = Y (0)e−2εL−2t or
equivalently that∫ L

0

|u− V |2 ≤ Me−αt where M =

∫ L

0

|u0 − V |2 and α = 2ε/L2. (4)

Note that the above way of converting the differential inequality (3) into the inequality (4)
is often attributed to Grönwall and called Grönwall’s inequality.

The above energy analysis allows us to conclude that u(t, x) converges exponentially
over time to a constant function in x. That constant is furthermore exactly equal to the
average velocity V of the initial condition u0.

Fourier Discretization of the Viscous Burgers Equation

Since u(t, x) is L-periodic in space at any fixed point in time, it shall be convenient to
rescale the x-axis so that L = 2π and represent u(t, x) in terms of the Fourier series

u(t, x) =
∞∑

k=−∞

ak(t)e
−ikx.
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We further truncate this series to obtain the discretization

u(t, x) ≈
K/2∑

k=−K/2

ak(t)e
−ikx.

As it will be numerically efficient to work with discrete transforms of size N = 2n we
further suppose K < N and take

ak(t) = 0 when k > K/2 or k < −K/2

to obtain that
K/2∑

k=−K/2

ak(t)e
−ikx =

N/2−1∑
k=−N/2

ak(t)e
−ikx.

Upon taking xℓ = 2πℓ/N the discrete Fourier inversion theorem now implies that

ak(0) =
1

N

N−1∑
ℓ=0

u0(xℓ)e
ikxℓ for k = −K/2, . . . ,K/2

where again ak(0) = 0 for k = −N/2, . . . ,−K/2− 1 and k = K/2 + 1, . . . , N/2− 1.
We now approximate each of the terms involving u(t, x) from the viscous Burgers

equation (1) in terms of the Fourier coefficients a(t).

ut ≈
∂

∂t

K/2∑
k=−K/2

ak(t)e
−ikx =

K/2∑
k=−K/2

a′k(t)e
−ikx.

uux ≈
K/2∑

j=−K/2

aj(t)e
−ijx ∂

∂x

K/2∑
k=−K/2

ak(t)e
−ikx

=

K/2∑
k=−K/2

K/2∑
j=−K/2

aj(t)(−ik)ak(t)e
−i(k+j)x

=

K/2∑
k=−K/2

k+K/2∑
p=k−K/2

(−ik)ak(t)ap−k(t)e
−ipx =

K∑
p=−K

cpe
−ipx

where we have made the change of variables p = k + j and

cp =

min(K/2,p+K/2)∑
k=max(−K/2,p−K/2)

(−ik)ak(t)ap−k(t) for p = −K, . . . ,K. (5)

Finally,

uxx =
∂2

∂x2

K/2∑
k=−K/2

ak(t)e
−ikx = −

K/2∑
k=−K/2

k2ak(t)e
−ikx.
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Observe that directly computing all the cp coefficients using (5) takes O(K2) number
of operations. However, by making use of the fast Fourier transform, this can be reduced
to O(N logN). Since

uux =
1

2

∂u2

∂x

first transform the coefficients ak(t) to obtain the values of u(xℓ) for ℓ = 0, . . . , N − 1 in
O(N logN) operations. Forming u(xℓ)

2 = u2(xℓ) and dividing by 2 takes N operations.
Finally, in another O(N logN) operations the Fourier inversion theorem yields that

u2 ≈
N/2−1∑
k=−N/2

bke
−ikx where bk =

1

N

N−1∑
ℓ=0

u2(xℓ)e
ikxℓ . (6)

It follows that cp = −ipbp modulo a couple conditions which we now discuss.

Observe first that the coefficients bp given by (5) range for p = −K, . . . ,K which is
twice the number of non-zero Fourier modes present in the original approximation of u.
Therefore, to compute these coefficients accurately using (6) we must have that N ≥ 2K.
This is the condition derived in class to avoid aliasing in the Fourier representation of u2.

Since we will only use the values of bk for k = −K/2, . . . ,K/2 when integrating u,
a slight modification of the aliasing argument leads to a more efficient use of computer
resources. Upon examining the terms which appear in (6) it is clear that the aliasing
which occurs as N becomes less than 2K in only in the high modes. Specifically, the
modes of the form e−ipxℓ are alias according to the rules.

e−ipxℓ is aliased to e−i(p−N)xℓ for p ≥ N/2

e−ipxℓ is aliased to e−i(p+N)xℓ for p < −N/2.

Now, suppose that K = αN for some α > 1/2. Since |k| ≤ K/2 and |j| ≤ K/2 it
follows that |p| ≤ αN . Note that

N/2 ≤ p ≤ αN implies −N/2 < p−N ≤ −(1− α)N

−αN ≤ p < −N/2 implies (1− α)N < p+N ≤ N/2

Therefore only modes such that |p| ≥ min(αN, (1− α)N) are aliased. Since we only need
the values of bk for |p| ≤ K/2. We choose α > 0 to be the smallest value such that

min
(
αN, (1− α)N

)
< K/2 = αN/2.

Therefore

1− α < α/2 which implies α > 2/3.

This is sometimes called the 2/3 anti-aliasing rule for a quadratic nonlinearity.
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The Reality Condition for the Fourier Series

Since the solution u to the viscous Burgers equation represents a velocity field then it
must be real valued. This implies a certain symmetry condition on the coefficients ak of
the Fourier series. Suppose the approximation

u(x, t) ≈
K/2∑

k=−K/2

ak(t)e
−ikx

is real valued. Taking complex conjugates yields

K/2∑
k=−K/2

ak(t)e−ikx =

K/2∑
k=−K/2

ak(t)e
ikx =

K/2∑
p=−K/2

a−p(t)e
−ipx.

after the change of variables p = −k. Now, since the Fourier modes are linearly indepen-
dent, it follows that

ak(t) = a−k(t) for k = −K/2, . . . ,K/2 and t ≥ 0. (7)

The good news is that this symmetry condition allows for the creation of a specialized
real-valued Fourier transform that economizes on the number of floating-point operations
needed by a factor of two. The bad news is that rounding errors in the standard complex
transform can cause the symmetric condition to be violated. For this reason it is impor-
tant when taking the Fourier transform of coefficients which satisfy (7) to always set the
imaginary part of the resulting velocity field u to zero. As the energy analysis performed
earlier only works for real-valued velocity fields, then rounding errors in the imaginary part
of u may grow catastrophically without bound if not explicitly set to zero.

MATLAB Code

In this section we present a simple script written in Matlab which approximates so-
lutions to the viscous Burgers equation with 2π-periodic boundary conditions using the
Runge–Kutta second order method. By taking Fourier transforms of the partial differential
equation we have obtained an ordinary differential equation of the form

dy

dt
= F (y) where y = (a−K/2, . . . , aK/2) (8)

and

F (y) = −
(
i(−K/2)b−K/2 + ε(−K/2)2a−K/2, . . . , i(K/2)bK/2 + ε(K/2)2aK/2

)
with the bk given by equation (6).

Setting tj = jh where h > 0 is the size of the time steps, a second order method can
be obtained by integrating both sides of (8) over the interval [tj , tj+1] and applying the
trapezoid rule to approximate the resulting integral. Thus,

y(tj+1)− y(tj) =

∫ tj+1

tj

F (y(t))dt ≈ h

2

(
F (y(tj)) + F (y(tj+1))

)
.

6



Math 702 Programming and Homework Assignment 2

To obtain an explicit scheme we further make a first order approximation of y(tj+1)
appearing in the term F (y(tj+1)) on the right-hand side via an Euler step of the form

y(tj+1) ≈ y(tj) + hF (y(tj)).

Now, denoting by yj the approximation such that yj ≈ y(tj+1) we obtain the rule

k1 = hF (yj)

k2 = hF (yj + k1)

yj+1 = yj + (k1 + k2)/2

which is often referred to as RK2.
A Matlab script to implement this method is

1 clear all
2 global kvec filt epsilon
3 N=256;
4 K=2*floor(N/3);
5 kvec=[0:K/2,zeros(1,N-K-1),-K/2:-1];
6 filt=[ones(1,K/2+1),zeros(1,N-K-1),ones(1,K/2)];
7 epsilon=0.01;
8 Tfin=1;
9

10 x=[0:2*pi/N:2*pi-2*pi/N];
11 load('initial.dat');
12 y=initial(:,1)';
13 a0=ifft(y).*filt;
14 yold=y;
15 steps=4096;
16

17 h=Tfin/steps;
18 at=a0;
19 n=0;
20 for j=1:steps
21 k1=h*f(at);
22 k2=h*f(at+k1);
23 at=at+(k1+k2)/2;
24 n=n+1;
25 end
26 yt=real(fft(at));
27 plot(x,yt);

where the file f.m is given by

1 function ft = f(at)
2 global kvec filt epsilon
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3 u=real(fft(at.*filt));
4 u2=u.*u/2;
5 b=ifft(u2);
6 ft=-kvec.*kvec*epsilon.*at+1i*kvec.*b;
7 end

In the above code the file initial.dat should consist of a list of N = 256 numbers that
correspond to the values of initial condition u0(xℓ) on the fundamental domain [0, 2π].
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Your answers should be presented in the form of a written report with
source code, graphs, tables and program output where appropriate.
Style of presentation counts as well as spelling, punctuation and gram-
mar. Please work independently; however, it is fine to visit the UNR
Writing Center for help with writing style. If you have any difficulties
please talk with me in my office hours or set up an appointment.

1. Plot the points in the data file that correspond to your initial condition.

2. Energy analysis shows that the velocity profile given by the solution u(t, x) to the
viscous Burgers equation converges to a constant as t → ∞. Find that constant for
your initial condition.

3. For Fourier transforms of length N = 256 show that the 2/3 anti-aliasing rule gives a
cutoff with K/2 = 85.

4. Use the RK2 method with a time step of h = 1/128 and ε = 0.01 to compute an
approximation of u(t, x) at time t = 1. You may use the code developed in class, the
code included with this handout or write your own. Plot your approximation.

5. Given a time step of size h = 2−m let Um(xℓ) be the corresponding approximation of
u(t, x) at time t = 1. Compute the norms of the errors

Em = ∥Um − Um+1∥ for m = 6, . . . , 11.

and make a table showing Em versus m.

6. Form the ratios Em/Em+1 from the values found in the previous problem to verify
that your implementation of the RK2 method is actually second order. Explain the
reasoning behind your verification.

7. [Extra Credit] Modify your code to use the RK4 method and repeat questions 5 and
6 above to verify that your implementation is fourth order.

8. [Extra Credit] Derive an anti-aliasing rule similar to the 2/3 rule that works for cubic
nonlinearlities such as u3.
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