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10.2.2. WEIERSTRASS APPROXIMATION THEOREM.

Let f be any continuous real-valued function on |a, bl. Then there is a sequence of
polynomials p, that converges uniformly to f on la,bl.

In the language of normed vector spaces, this theorem says that the polynomials
are dense in Cla, b] in the max norm.

In fact, this theorem is sufficiently important that many different proofs have
been found. The proof we give was found in 1912 by Bernstein, a Russian mathe-
matician. It explicitly constructs the approximating polynomial. This algorithm is
not the most efficient, but the problem of finding efficient algorithms can wait until
we have proved that the theorem is true.
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10.3. Bernstein’s Proof of the 'Weierstrass Theorem

' n
Recall the binomial formula, (z + )" = 3 (})z kyn=k Ifwesety = 1 —u,
k=0
then we obtain
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Bernstein started by considering the functions

Pﬁ(@“(?f)ﬁ(f—x)”“k for k=0,1,...,n,

now calied Bernstein polynomials. They have several virtues. They are all poly-
nomials of degree n. They take only nonnegative values on {0, 1]. And they add
up to 1. Moreover, P* is a “bump” function with a maximum at &/, as a routine
calculus calculation shows. For example, the four functions Pﬁ forO < k < 3are
given in Figure 10.3.

Given a continuous function f on [0, 1], define a polynomial B, f by

(Buf)(z) = Zf Ef () (1 - z)*%,

This is a linear combmaﬂon of the poiynormals PP and so B, f is a polynomial of
degree at most n. We think of B,, as a function from the vector space C[0, 1] into
itself. This map has several easy but important properties. If f, g € C{0, 1], we say
that f > gif f(z) > g{z) forall 0 < 2 < 1.

10.3.1. PROPOSITION. The map By, is linear and monotone. That is, for all
f,oe ClO,and o ¢ R,

(1) Bu(f+g)= Buf + Bny

(2) Bnlaf) = abBaf

(3) Bof 20 if f20

@ BufzBug if f2g

(5) 1Bafi< Brg if |fI<g

The only part that requires any cieverness is the monotonicity. However, since
each P’ > 0, it follows that when f > 0, then B, f is also positive. In particular,
/1 < g means that —g < f < g; and hence — B,,g < B,f < B,g. The details are
left to the reader.

Next let us compute B, f for three basic polynomials: 1, z, and z°.

10.3.2. LEMMA. B,1 =1, B,z=uz and

n—-1, 1 7 - 2
-+ — :v"*w+
n

B,z? =
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FIGURE 10.3. The Bernstein polynomials of degree 3.

PROOF. For the first equation, we use the Binomial Theorem to get

Bal = f: 1 (Z)m. )R

P

Next, notice that

%(Z) - %k!(nni Byl .(k —-(?)i—(;)j— i (Z ) D

Using this result and the Binomial Theorem, we have

Bpx = Z :E (:) 2F (1 — ) F

k=0
= azi (n - ]>a:"“ﬁ1(1 ~ gy
c~\k-1
=z{zx+ (1~ .’L‘))n_l = .

Finally, notice that

By _ kBt
n?\k/) n?ki{n—k)

(k=1)+1 (n— 1)
- n (k- Di{n —k)!

-1 k=1 - 1)!
_n (-1

(n—1)!

1
noone-1 (k- 1){n-k} n (k—Hin - k)

Mnm] 7 2 +1 ]
oo \k=2 n\k-—-1/
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fe=0
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PROOF OF WEIERSTRASS'S THEOREM. By Exercise 10.2.A, it suffices to prove
the theorem for the interval [0, 1]. Fix a continuous function f in C[0, 1]. We will
prove that for each £ > 0, there is some N > 0 so that

[f(z) ~ Bof(z)| < ¢ forall n> N,

Since [0, 1] is compact, f is uniformly continuous on [0, 1] by Theorem 5.5.9.
Thus for our given ¢ > 0, there is some § > 0 so that

flz) = fly)) < % forall |z —y| <4, ‘w,y € [0,1].

Also, f is bounded on [0, 1] by the Extreme Value Theorem (Theorem 5.4.4). So
let

M=|flle= sup |flz)
ze(l,]

Fix any point ¢ € [0, 1]. We claim that

g 2M
fz) — fla)l =5+ —52—{93— a).
Indeed, if |z — a] < 4, then
e & 2M 5
Af () = << D
7@ = fa)l < 5 < S+ e - a)
by our estimate of uniform continuity. And if |z — a] > §, then

lf(m)—f(a)lgMgzM(EE a)2<e 2M

o & o e R
. __2+62(:L a)”.

Notice that by linearity and the fact that B,,1 = 1, we obtain

Bu(f = Ha))(z) = Buflz) ~ fla).
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Now use the positivity of our map B, to obtain

£  2M
Bof (@)~ [(@)] < Ba(5 + F-(o - 0)?)
2
=§-—0—2—;\§—(2+Iwwww2ax+a2>
e 2 ,  2Mz—z*
27 52( 2) 52 n

Evaluate this at © = ¢ to obtain

: e 2Ma—a? e M
B, fla) — fla)| < = ITE ety
We use the fact that max{a —a*: 0 <a < 1} = L.
This estimate does not depend on the point a. So we have found
£ M
”Bﬂf“ f”oo < 5 -+

252,
S0 now choose N > gg s0 that ng - Thenforalln > N,
oS =g [

As was already mentioned, using Bernstein polynomials is not an efficient way
of finding polynomial approximations. However, Bernstein polynomials have other
advantages, which are developed in the Fxercises.




