Annalee Gomm

Math 714: Assignment \#2
3.32. Verify that if $A \in \mathcal{M}, \lambda(A)=0$, and $B \subset A$, then $B \in \mathcal{M}$ and $\lambda(B)=0$.

Suppose that $A \in \mathcal{M}$ with $\lambda(A)=0$, and let B be any subset of A. By the nonnegativity and monotonicity of Lebesgue outer measure, we have

$$
0 \leq \lambda^{*}(B) \leq \lambda^{*}(A)=0
$$

and so $\lambda^{*}(B)=0$. Using Proposition 3.4 from our text, we conclude that $B \in \mathcal{M}$. Moreover, we have

$$
\lambda(B)=\lambda^{*}(B)=0,
$$

as claimed.
3.44. A set is called $a G_{\delta}$-set if it is the intersection of a countable number of open sets; and a set is called an F_{σ}-set if it is the union of a countable number of closed sets. Note that G_{δ}-sets and F_{σ}-sets are Borel sets. Now suppose that $E \in \mathcal{M}$.
(a) Show that there is a G_{δ}-set, G, and an F_{σ}-set, F, such that $F \subset E \subset G$ and $\lambda(E \backslash F)=$ $\lambda(G \backslash E)=0$.
(b) Referring to part (a), deduce that $\lambda(F)=\lambda(E)=\lambda(G)$.

We begin by proving the following claim: for each $\epsilon>0$, there is an open set, O, with $E \subset O$ and $\lambda(O \backslash E)<\epsilon$. First suppose that $\lambda(E)<\infty$. We have

$$
\lambda(E)=\lambda^{*}(E)=\inf \left\{\sum_{n=1}^{\infty} l\left(I_{n}\right):\left\{I_{n}\right\}_{n=1}^{\infty} \text { open intervals, } E \subset \bigcup_{n=1}^{\infty} I_{n}\right\}
$$

and so $\lambda(E)+\epsilon$ is not a lower bound for $\left\{\sum_{n=1}^{\infty} l\left(I_{n}\right):\left\{I_{n}\right\}_{n=1}^{\infty}\right.$ open intervals, $\left.E \subset \bigcup_{n=1}^{\infty} I_{n}\right\}$. This means that there is some sequence $\left\{J_{n}\right\}_{n=1}^{\infty}$ of open intervals such that $E \subset \bigcup_{n=1}^{\infty} J_{n}$ and $\sum_{n=1}^{\infty} l\left(J_{n}\right)<\lambda(E)+\epsilon$. If we put $O=\bigcup_{n=1}^{\infty} J_{n}$, then O is open and $E \subset O$. We also have

$$
\lambda(O) \leq \sum_{n=1}^{\infty} \lambda\left(J_{n}\right)=\sum_{n=1}^{\infty} l\left(J_{n}\right)<\lambda(E)+\epsilon,
$$

and so, since $\lambda(E)$ is finite, $\lambda(O \backslash E)=\lambda(O)-\lambda(E)<\epsilon$. This proves the claim for $E \in \mathcal{M}$ with finite measure.

Now let $E \in \mathcal{M}$ be arbitrary, and fix $\epsilon>0$. Put $E_{n}=\{x \in E:|x|<n\}=E_{n} \cap(-n, n)$ for each natural number n, so that $\lambda\left(E_{n}\right) \leq 2 n<\infty$ and $E=\bigcup_{n=1}^{\infty} E_{n}$. By what we showed
above, for each n we can find an open set O_{n} such that $E_{n} \subset O_{n}$ and $\lambda\left(O_{n} \backslash E_{n}\right)<\epsilon / 2^{n}$. Let $O=\bigcup_{n=1}^{\infty} O_{n}$. Then O is open, $E \subset O$, and

$$
\begin{aligned}
\lambda(O \backslash E) & =\lambda\left(\bigcup_{n=1}^{\infty} O_{n} \backslash \bigcup_{n=1}^{\infty} E_{n}\right) \\
& =\lambda\left(\bigcup_{n=1}^{\infty}\left(O_{n} \backslash E_{n}\right)\right) \\
& \leq \sum_{n=1}^{\infty} \lambda\left(O_{n} \backslash E_{n}\right) \\
& <\sum_{n=1}^{\infty} \epsilon / 2^{n} \\
& =\epsilon,
\end{aligned}
$$

completing the proof of the claim.
For each $n \in \mathcal{N}$, let G_{n} be an open set containing E such that $\lambda\left(G_{n} \backslash E\right)<1 / n$. The existence of such a set is guaranteed by the claim proved above. Put $G=\cap_{n=1}^{\infty} G_{n}$. Then G is a G_{δ}-set and $E \subset G$. We have

$$
\lambda(G \backslash E) \leq \lambda\left(G_{n} \backslash E\right)<1 / n
$$

for all n, so we conclude that $\lambda(G \backslash E)=0$.
Note that $E^{c} \in \mathcal{M}$, so the claim above allows us to find, for each $n \in \mathcal{N}$, an open set O_{n} such that $E^{c} \subset O_{n}$ and $\lambda\left(O_{n} \backslash E^{c}\right)<1 / n$. Let $F_{n}=O_{n}^{c}$. Then F_{n} is closed (since O_{n} is open), and $E^{c} \subset O_{n}$ implies that $F_{n} \subset E$. Since $E \backslash F_{n}=E \cap O_{n}=O_{n} \cap E=O_{n} \backslash E^{c}$, we have $\lambda\left(E \backslash F_{n}\right)=\lambda\left(O_{n} \backslash E^{c}\right)<1 / n$. Now let $F=\bigcup_{n=1}^{\infty} F_{n}$, so that F is an F_{σ}-set with $F \subset E$. We have

$$
\lambda(E \backslash F) \leq \lambda\left(E \backslash F_{n}\right)<1 / n
$$

for each n, and so $\lambda(E \backslash F)=0$.
Finally, observe that since $F \subset E$, we have

$$
\lambda(E)=\lambda(F)+\lambda(E \backslash F)=\lambda(F)+0=\lambda(F)
$$

Similarly, since $E \subset G$, we have

$$
\lambda(G)=\lambda(E)+\lambda(G \backslash E)=\lambda(E)+0=\lambda(E)
$$

Hence $\lambda(F)=\lambda(E)=\lambda(G)$.
4.16. Prove that the measure space, $(\mathcal{R}, \mathcal{M}, \lambda)$, is the completion of the measure space, $\left(\mathcal{R}, \mathcal{B}, \lambda_{\mid \mathcal{B}}\right)$. Use the following steps:
(a) Verify that $\overline{\mathcal{B}} \subset \mathcal{M}$ by employing Exercise 3.32.
(b) Show that $\overline{\mathcal{B}} \supset \mathcal{M}$ by applying Exercise 3.44.
(c) Prove that $\lambda=\overline{\lambda_{\mid \mathcal{B}}}$.

Let $B \in \overline{\mathcal{B}}$. That is, suppose we can write $B=A \cup C$, where $A \in \mathcal{B}$ and C is a subset of some Borel set with Lebesgue measure 0. By Exercise 3.32, $C \in \mathcal{M}$. Since $A \in \mathcal{B} \subset \mathcal{M}$ and $C \in \mathcal{M}$, the union $B=A \cup C$ must be in \mathcal{M} as well, \mathcal{M} being closed under unions. This shows that $\overline{\mathcal{B}} \subset \mathcal{M}$.

Now let $E \in \mathcal{M}$. Choose $F \in \mathcal{B}$ and $G \in \mathcal{B}$ as in Exercise 3.44 so that $F \subset E \subset G$, $\lambda(E \backslash F)=\lambda(G \backslash E)=0$, and $\lambda(F)=\lambda(E)=\lambda(G)$. Note that $G \backslash F=G \cup F^{c} \in \mathcal{B}$ since \mathcal{B} is closed under complements and unions, and that

$$
\lambda(G \backslash F)=\lambda((G \backslash E) \cup(E \backslash F))=\lambda(E \backslash F)+\lambda(G \backslash E)=0
$$

This means that $E \backslash F$ is a subset of a Borel set with measure 0 . We have $E=F \cup(E \backslash F)$, and so E is the union of a Borel set and a subset of a Borel set with measure 0 . This means that $E \in \overline{\mathcal{B}}$, and consequently we conclude that $\overline{\mathcal{B}} \supset M$.

Having proved that $\mathcal{M}=\overline{\mathcal{B}}$, it remains to show that $\lambda=\overline{\lambda_{\mid \mathcal{B}}}$. To this end, suppose $E \in \mathcal{M}=\overline{\mathcal{B}}$. We can write $E=A \cup C$, where $A \in \mathcal{B}$ and C is a subset of some Borel set with Lebesgue measure 0 (so $\lambda(C)=0$). We have $A \subset E$, hence $\lambda(A) \leq \lambda(E)$, and

$$
\lambda(E)=\lambda(A \cup C) \leq \lambda(A)+\lambda(C)=\lambda(A)+0
$$

It follows that $\lambda(E)=\lambda(A)$. Since $\overline{\lambda_{\mid \mathcal{B}}}(E)=\lambda(A)$ by definition, we have $\lambda(E)=\overline{\lambda_{\mid \mathcal{B}}}(E)$, completing the proof.
4.80. Suppose that $f \in \mathcal{L}^{1}(\Omega, \mathcal{A}, \mu)$. Show that for each $\epsilon>0$, there is a $\delta>0$ such that $\mu(E)<\delta$ implies $\int_{E}|f| d \mu<\epsilon$.

Define a nondecreasing sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of nonnegative functions by

$$
f_{n}(x)=\left\{\begin{array}{cl}
|f(x)| & \text { if }|f(x)| \leq n \\
n & \text { otherwise }
\end{array}\right.
$$

for each $n \in \mathcal{N}$. This sequence converges pointwise to $|f|$, so by the Monotone Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu=\int_{\Omega}|f| d \mu
$$

Since $\int_{\Omega} f_{n} d \mu \leq \int_{\Omega}|f| d \mu<\infty$ for all n, this means that we can choose an n large enough to ensure

$$
\begin{equation*}
\int_{\Omega}|f| d \mu-\int_{\Omega} f_{n} d \mu=\int_{\Omega}\left(|f|-f_{n}\right) d \mu<\epsilon / 2 \tag{1}
\end{equation*}
$$

Next, note that $f_{n} \leq n$, and so $\int_{E} f_{n} d \mu \leq \int_{E} n d \mu=n \mu(E)$ for any $E \in \mathcal{A}$. Put $\delta=\epsilon / 2 n$. Then $\mu(E)<\delta$ implies

$$
\begin{equation*}
\int_{E} f_{n} d \mu \leq n \mu(E)<\epsilon / 2 \tag{2}
\end{equation*}
$$

It follows that if $\mu(E)<\delta$, then

$$
\begin{aligned}
\int_{E}|f| d \mu & =\int_{E}\left(|f|-f_{n}\right) d \mu+\int_{E} f_{n} d \mu \\
& \leq \underbrace{\int_{\Omega}\left(|f|-f_{n}\right) d \mu}_{<\epsilon / 2 \text { by }(1)}+\underbrace{\int_{E} f_{n} d \mu}_{<\epsilon / 2 \text { by }(2)} \\
& <\epsilon,
\end{aligned}
$$

which is what we wanted to show.
4.147. Denote by \mathcal{B}_{2} the smallest σ-algebra of subsets of \mathcal{R}^{2} that contains all open sets of \mathcal{R}^{2}. Members of \mathcal{B}_{2} are called two-dimensional Borel sets.
(a) Show that $\mathcal{B}_{2}=\mathcal{B} \times \mathcal{B}$.
(b) A measure on \mathcal{B}_{2} is called a two-dimensional Borel measure. Suppose that μ and ν are finite two-dimensional Borel measures such that $\mu(A \times B)=\nu(A \times B)$ for all $A, B \in \mathcal{B}$. Prove that $\mu=\nu$.

Let us first prove that \mathcal{B}_{2} is contained in $\mathcal{B} \times \mathcal{B}$. To do this we will use the fact that the set, \mathcal{T}, of open rectangles of the form $(a, b) \times(c, d)$ with $a, b, c, d \in \mathcal{Q}$, forms a countable basis for the topology on \mathcal{R}^{2}. If U is an open subset of \mathcal{R}^{2}, then we can write U as a countable union of elements of \mathcal{T}. But each element of \mathcal{T} is of the form $(a, b) \times(c, d)$, where $(a, b) \in \mathcal{B}$ and $(c, d) \in \mathcal{B}$, so clearly elements of \mathcal{T} are contained in $\mathcal{B} \times \mathcal{B}$. Hence U is a countable union of elements of $\mathcal{B} \times \mathcal{B}$, and therefore $U \in \mathcal{B} \times \mathcal{B}$. This shows that $\mathcal{B} \times \mathcal{B}$ is a σ-algebra containing all open sets of \mathcal{R}^{2}. Since \mathcal{B}_{2} is the smallest σ-algebra containing the open sets, it follows that $\mathcal{B}_{2} \subset \mathcal{B} \times \mathcal{B}$.

To show that $\mathcal{B} \times \mathcal{B} \subset \mathcal{B}_{2}$, we will show that every measurable rectangle is in \mathcal{B}_{2}. Consider the set $\mathcal{B}_{x}=\{A \times \mathcal{R}: A \in \mathcal{B}\}$ of subsets of \mathcal{R}^{2}. Note that

$$
\left(A^{c} \times \mathcal{R}\right)=(A \times \mathcal{R})^{c} \quad \text { and } \quad\left(\bigcup_{n=1}^{\infty} A_{n}\right) \times \mathcal{R}=\bigcup_{n=1}^{\infty}\left(A_{n} \times \mathcal{R}\right)
$$

Therefore, since each $A \in \mathcal{B}$ can be obtained by taking complements and countable unions of open subsets of \mathcal{R}, each $A \times \mathcal{R} \in \mathcal{B}_{x}$ can be obtained by taking complements and countable unions of sets of the form $(U \times \mathcal{R})$, where $U \subset \mathcal{R}$ is open. But each $(U \times \mathcal{R})$ is open in \mathcal{R}^{2}, and therefore is an member of \mathcal{B}_{2}, as are complements and countable unions of sets of this form. It follows that $\mathcal{B}_{x} \subset \mathcal{B}_{2}$. Similar reasoning shows that $\mathcal{B}_{y}=\{\mathcal{R} \times B: B \in \mathcal{B}\} \subset \mathcal{B}_{2}$. Now suppose that $A \in \mathcal{B}$ and $B \in \mathcal{B}$. Then $A \times B=(A \times \mathcal{R}) \cap(\mathcal{R} \times B)$ is the intersection of two members of \mathcal{B}_{2}, and so $A \times B \in \mathcal{B}_{2}$ since \mathcal{B}_{2} is closed under unions. This shows that \mathcal{B}_{2} is a σ-algebra containing the set

$$
\mathcal{U}=\{A \times B: A \in \mathcal{B} \text { and } B \in \mathcal{B}\}
$$

of measurable rectangles. As $\mathcal{B} \times \mathcal{B}$ is the smallest σ-algebra containing \mathcal{U}, it follows that $\mathcal{B} \times \mathcal{B} \subset \mathcal{B}_{2}$. Having also shown the reverse containment, we now conclude that $\mathcal{B}_{2}=\mathcal{B} \times \mathcal{B}$.

Now suppose that μ and ν are finite two-dimensional Borel measures such that $\mu(A \times B)=$ $\nu(A \times B)$ for all $A, B \in \mathcal{B}$. This means that $\mu_{\mid \mathcal{U}}=\nu_{\mathcal{U}}$, where

$$
\mathcal{U}=\{A \times B: A \in \mathcal{B} \text { and } B \in \mathcal{B}\}
$$

is the semialgebra of measurable rectangles of \mathcal{R}^{2}. The σ-algebra generated by \mathcal{U} is $\mathcal{B} \times \mathcal{B}$, which by what we showed above is equal to \mathcal{B}_{2}. Since μ and ν are finite measures, Corollary 4.7 - one of the corollaries to the uniqueness portion of the Extension Theorem - implies that $\mu=\nu$ on the measurable space $\left(\mathcal{R}^{2}, \mathcal{B}_{2}\right)$.

