Haar Coefficient Decay Rates Case 2. This handout analyzes the decay of the Haar
coefficients as j — oo in the case where f has a jump discontinuity.

Theorem 1. If f is bounded on [0, 1] then (f, h; ) = O(2779/2) as j — oc.
Proof. Let B =sup{|f(t)|:t € [0,1] }. Then
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Theorem 2. Suppose f is piecewise differentiable with bounded derivative on [0, 1] and
has a jump discontinuity at xg where x¢ is a dyadic irrational. Then the asymptotic bound
in Theorem 1 is sharp.

Before proving Theorem 2 we prove the following lemma:

Lemma. If 2o € [0,1] is a dyadic irrational then there is an increasing sequence j, of
natural numbers such that

, 1
Z < 23”$0 mod 1 < 5

Note that 2/7x¢ mod 1 is equal to 2/»xg — |29z | where |z] is the greatest integer less
than or equal to z.

Proof. Write x( using the dyadic expansion
o= — where b; € {0,1} for all i € N.

Define
J():{sz:()} and le{lblzl}

Claim that both Jy and J; are infinite. If not then one must be finite. If J; is finite then
there is some N such that b; = 0 for all 4 > N. Then

would be dyadic rational. If Jj is finite then there is some N such that b; = 1 for all 7 > N.
In this case

would again be dyadic rational. Therefore JO and J; must both be infinite.

Since both Jy and J; are infinite, there must be an increasing sequence j, such that

bj,+1=0 and bj,42=1 for every n € N.
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Now

b b b
2779 mod 1 = E 2J_27;_§ TR +§
z'—1+jn i=1 ;
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Since x( is dyadic irrational then w is dyadic 1rrat10nal. Therefore 0 < w < 1 and
consequently 1/4 < 2Imxy mod 1 < 1/2. This finishes the proof of the Lemma.

Proof of Theorem 2. Since f is piecewise differentiable there are only finitely many
points E C [0, 1] where f is not differentiable. Define

d=min{|r—y|l:z,yc Eand z #y }.

By Lemma 1 there is an increasing sequence j,, of natural numbers such that
1 , 1
1 < 2mxg mod 1 < 3 for every n € N.

We can assume without loss of generality that 2771 < §. For each n € N choose k,, so that

kn kn,+1
[23_'n’ 2in )
By definition 2729 mod 1 = 2/»2q — k,,. Therefore

X0 or equivalently 2ngy € [kn, kn +1).

1 : 1 kn+ 3 kn+ 5
1 < 22rxy—k, < 3 or equivalently Tg € ( n2jn 4. n2jn 2 )

For notational convenience, given n € N fixed, define

. . kn kn+1 . CL+b

Since b — a = 279 < 2771 < § then f is differentiable on (a,zq) and (z9,b). For t € (a, zo)
the Fundamental Theorem of Calculus implies that

flag) - 1(t) = / " p(s)ds

t
f0 - fa) = [ f(s)as
Consequently,

3fﬂm@ﬁzévwwmt
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—T+J

and for t € (xo,b) that



where

1= [ fapny i | b Fla h(e) de
J:—/:Otmof'(s dsdt+/ / 1/ (s)h(t) dsdt.

Estimate I from below. Recall that

21/2 fort € [a,c)
h(t) = , ’
®) {—27/2 for t € [c,b)

and

and that zg € (a + 27772, ¢). Therefore

/ Flag )bt dt = f(z5)27 (20 — a)

and also

b . )
/ flxg)h(t)dt = / flx)2//? dt — / Flxd)20/2 at
= F(a)2 /e — mo — b+ ¢) = — f(a)2/ (w0 — a).
It follows that |
I'=(flxg)— f(x))2% (w0 — a)
and hence 1
) 2 | f(xg) = Fad)|27227972 = | f(ag) = flag)[279/2,

Now estimate J from above. Since f’ is bounded M = sup{|f'(¢)| : t € [0,1]\ E'} is finite.
It follows that

o fTo . b t '
]| g/ M2J/2dsdt+/ / M2/2 ds dt
a xo Y xo

t
b b
< 2M2j/2/ / dsdt = 2M27/%(b — a)? = 2M27%9/2,
Therefore, for every n € N we have
1 _ . o
(k) = 1+ I > |1 = 1| > 2| f(2g) = fla) 2772 — 2027590072,
Choose N so large that n > N implies
34,2 _ 1 — +\[9—din /2
2M273In/2 < g\f(gco)—f(a;o)p n/2,
Then, for n > N it follows that
_j 1 _
(F b )| 2 A2 where A= g f(wg) = flag)].

This shows the bound in Theorem 1 is sharp and finishes the proof of Theorem 2.
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