
Haar Coefficient Decay Rates Case 2. This handout analyzes the decay of the Haar
coefficients as j → ∞ in the case where f has a jump discontinuity.

Theorem 1. If f is bounded on [0, 1] then 〈f, hj,k〉 = O(2−j/2) as j → ∞.

Proof. Let B = sup{ |f(t)| : t ∈ [0, 1] }. Then

|〈f, hj,k〉| =
∣

∣

∣

∫ 1

0

f(t)hj,k(t) dt
∣

∣

∣
≤

∫ 1

0

|f(t)||hj,k(t)| dt

≤

∫ (k+1)/2j

k/2j
B2j/2 dt = B2j/2

(k + 1

2j
−

k

2j

)

= B2−j/2.

Theorem 2. Suppose f is piecewise differentiable with bounded derivative on [0, 1] and
has a jump discontinuity at x0 where x0 is a dyadic irrational. Then the asymptotic bound
in Theorem 1 is sharp.

Before proving Theorem 2 we prove the following lemma:

Lemma. If x0 ∈ [0, 1] is a dyadic irrational then there is an increasing sequence jn of
natural numbers such that

1

4
< 2jnx0 mod 1 <

1

2
.

Note that 2jnx0 mod 1 is equal to 2jnx0 − ⌊2jnx0⌋ where ⌊x⌋ is the greatest integer less
than or equal to x.

Proof. Write x0 using the dyadic expansion

x0 =
∞
∑

i=1

bi
2i

where bi ∈ {0, 1} for all i ∈ N.

Define
J0 = { i : bi = 0 } and J1 = { i : bi = 1 }.

Claim that both J0 and J1 are infinite. If not then one must be finite. If J1 is finite then
there is some N such that bi = 0 for all i ≥ N . Then

x0 =

∞
∑

i=1

bi
2i

=

N−1
∑

i=1

bi
2i

would be dyadic rational. If J0 is finite then there is some N such that bi = 1 for all i ≥ N .
In this case

x0 =

∞
∑

i=1

bi
2i

=

N−1
∑

i=1

bi
2i

+

∞
∑

i=N

1

2i
=

N−1
∑

i=1

bi
2i

+
1

2N−1

would again be dyadic rational. Therefore J0 and J1 must both be infinite.

Since both J0 and J1 are infinite, there must be an increasing sequence jn such that

bjn+1 = 0 and bjn+2 = 1 for every n ∈ N.
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Now

2jnx0 mod 1 =

∞
∑

i=1+jn

2jn
bi
2i

=

∞
∑

i=1

bjn+i

2i
=

bjn+1

2
+

bjn+2

4
+

∞
∑

i=3

bjn+i

2i

=
1

4
+

∞
∑

i=3

bjn+i

2i
=

1

4
+

1

4

∞
∑

i=1

bjn+i+2

2i
=

1

4
+

1

4
w.

Since x0 is dyadic irrational then w is dyadic irrational. Therefore 0 < w < 1 and
consequently 1/4 < 2jnx0 mod 1 < 1/2. This finishes the proof of the Lemma.

Proof of Theorem 2. Since f is piecewise differentiable there are only finitely many
points E ⊆ [0, 1] where f is not differentiable. Define

δ = min
{

|x− y| : x, y ∈ E and x 6= y
}

.

By Lemma 1 there is an increasing sequence jn of natural numbers such that

1

4
< 2jnx0 mod 1 <

1

2
for every n ∈ N.

We can assume without loss of generality that 2−j1 < δ. For each n ∈ N choose kn so that

x0 ∈
[ kn
2jn

,
kn + 1

2jn

)

or equivalently 2jnx0 ∈ [kn, kn + 1).

By definition 2jnx0 mod 1 = 2jnx0 − kn. Therefore

1

4
< 2jnx0 − kn <

1

2
or equivalently x0 ∈

(kn + 1
4

2jn
,
kn + 1

2

2jn

)

.

For notational convenience, given n ∈ N fixed, define

h = hjn,kn
, j = jn, a =

kn
2jn

, b =
kn + 1

2jn
and c =

a+ b

2
.

Since b− a = 2−j ≤ 2−j1 < δ then f is differentiable on (a, x0) and (x0, b). For t ∈ (a, x0)
the Fundamental Theorem of Calculus implies that

f(x−

0 )− f(t) =

∫ x0

t

f ′(s) ds

and for t ∈ (x0, b) that

f(t)− f(x+
0 ) =

∫ t

x0

f ′(s) ds.

Consequently,

〈f, h〉 =

∫ 1

0

f(t)h(t) dt =

∫ b

a

f(t)h(t) dt

=

∫ x0

a

(

f(x−

0 )−

∫ x0

t

f ′(s) ds
)

h(t) dt+

∫ b

x0

(

f(x+
0 ) +

∫ t

x0

f ′(s) ds
)

h(t) dt

= I + J
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where

I =

∫ x0

a

f(x−

0 )h(t) dt+

∫ b

x0

f(x+
0 )h(t) dt

and

J = −

∫ x0

a

∫ x0

t

f ′(s)h(t) ds dt+

∫ b

x0

∫ t

x0

f ′(s)h(t) ds dt.

Estimate I from below. Recall that

h(t) =

{

2j/2 for t ∈ [a, c)
−2j/2 for t ∈ [c, b)

and that x0 ∈ (a+ 2−j−2, c). Therefore
∫ x0

a

f(x−

0 )h(t) dt = f(x−

0 )2
j/2(x0 − a)

and also
∫ b

x0

f(x+
0 )h(t) dt =

∫ c

x0

f(x+
0 )2

j/2 dt−

∫ b

c

f(x+
0 )2

j/2 dt

= f(x+
0 )2

j/2(c− x0 − b+ c) = −f(x+
0 )2

j/2(x0 − a).

It follows that
I =

(

f(x−

0 )− f(x+
0 )

)

2j/2(x0 − a)

and hence

|I| ≥
∣

∣f(x−

0 )− f(x+
0 )

∣

∣2j/22−j−2 =
1

4

∣

∣f(x−

0 )− f(x+
0 )

∣

∣2−j/2.

Now estimate J from above. Since f ′ is bounded M = sup{ |f ′(t)| : t ∈ [0, 1] \E } is finite.
It follows that

|J | ≤

∫ x0

a

∫ x0

t

M2j/2 ds dt+

∫ b

x0

∫ t

x0

M2j/2 ds dt

≤ 2M2j/2
∫ b

a

∫ b

a

ds dt = 2M2j/2(b− a)2 = 2M2−3j/2.

Therefore, for every n ∈ N we have

|〈f, hjn,kn
〉| = |I + J | ≥ |I| − |J | ≥

1

4

∣

∣f(x−

0 )− f(x+
0 )

∣

∣2−jn/2 − 2M2−3jn/2.

Choose N so large that n ≥ N implies

2M2−3jn/2 <
1

8

∣

∣f(x−

0 )− f(x+
0 )

∣

∣2−jn/2.

Then, for n ≥ N it follows that

|〈f, hjn,kn
〉| ≥ A2−jn/2 where A =

1

8

∣

∣f(x−

0 )− f(x+
0 )

∣

∣.

This shows the bound in Theorem 1 is sharp and finishes the proof of Theorem 2.
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