Applied Mathematics at the University of Nevada Reno

Applied Mathematics Publications

Submitted or Accepted

  1. P. Solin, S. Giani: Adaptive hp-FEM for nonsymmetric eigenvalue problems. Computing, submitted, 2012.

  2. P. Solin, L. Korous: Adaptive hp-FEM with Dynamical Meshes for Problems with Traveling Sharp Fronts. Computing, accepted, 2012.

  3. L. Korous, P. Solin: An Adaptive hp-DG method with Dynamically-Changing Meshes for Non-Stationary Compressible Euler Equations, Computing, accepted, 2012.

  4. J. Chleboun, P. Solin: On Optimal Node and Degree Distribution in One-Dimensional hp-FEM. Computing, accepted, 2012.

2012

  1. P. Solin, S. Giani: An Iterative Finite Element Method for Elliptic Eigenvalue Problems, Journal of Computational and Applied Mathematics, Vol. 236, No. 18. (December 2012), pp. 4582-4599.

  2. P. Solin, L. Korous: Adaptive Higher-Order Finite Element Methods for Transient PDE Problems Based on Embedded Higher-Order Implicit Runge-Kutta Methods. Journal of Computational Physics, Volume 231, Issue 4, 20 February 2012, pp. 1635-1649.

  3. D. Pugal, P. Solin, K.J. Kim, A. Aabloo: Modeling Ionic Polymer-Metal Composites with Space-Time Adaptive Multimesh hp-FEM, Commun. Comput. Phys., 11 (2012), pp. 249-270.

  4. K.M. Hayden, A.S. Telyakovskiy, S.W. Wheatcraft, A note on free-surface films in fractures, Advances in Water Resources, 2012; 49, 72-75.

  5. J. Mortensen, S. Olsen, J.-Y. Parlange, A.S. Telyakovskiy, Approximate similarity solution to a nonlinear diffusion equation with spherical symmetry, International Journal of Numerical Analysis and Modeling, 2012; 9(1), 105-114.

2011

  1. B. Chen-Charpentier, L. Jodar, A.S. Telyakovskiy, Polynomial approximation of nonlinear differential systems with prefixed accuracy, Applied Mathematics and Computation, 2011; 218(5), 1650-1657.

  2. P. Solin, O. Certik, L. Korous: Three Anisotropic Benchmarks for Adaptive Finite Element Methods, Appl. Math. Comput.

  3. P. Solin, M. Kuraz: Solving the Nonstationary Richards Equation with Adaptive hp-FEM, Advanced Water Resources, Vol. 34, Issue 9, 2011, pp. 1062-1081.

  4. L. Dubcova, P. Solin, G. Hansen, H. Park: Comparison of Multimesh hp-FEM to Interpolation and Projection Methods for Spatial Coupling of Reactor Thermal and Neutron Diffusion Calculations, J. Comput. Phys. 230 (2011) 1182-1197.

2010

  1. Olson, Eric J.; Robinson, James C., Almost bi-Lipschitz embeddings and almost homogeneous sets. Trans. Amer. Math. Soc. 362 (2010), no. 1, 145--168.

  2. I. Dolezel, P. Karban, M. Donatova, P. Solin: Integrodifferential Approach to Solution of Eddy Currents in Linear Structures with Motion. Math. Comput. Simul. 80 (2010) 1636-1646.

  3. I. Dolezel, L. Dubcova, P. Karban, J. Cerveny, P. Solin: Inductively Heated Incompressible Flow of Electrically Conductive Liquid in Pipe, IEEE Transactions on Magnetics 46 (2010).

  4. P. Solin, L. Dubcova, J. Cerveny, I. Dolezel: Adaptive hp-FEM with Arbitrary-Level Hanging Nodes for Maxwell's Equations, Advances in Applied Mathematics and Mechanics, Vol. 2, No. 4, 2010, pp. 518 - 532.

  5. P. Solin, L. Dubcova, J. Kruis: Adaptive hp-FEM with Dynamical Meshes for Transient Heat and Moisture Transfer Problems, J. Comput. Appl. Math. 233 (2010) 3103-3112.

  6. P. Solin, D. Andrs, J. Cerveny, M. Simko: PDE-Independent Adaptive hp-FEM Based on Hierarchic Extension of Finite Element Spaces, J. Comput. Appl. Math. 233 (2010) 3086-3094.

  7. L. Dubcova, P. Solin, J. Cerveny, P. Kus: Space and Time Adaptive Two-Mesh hp-FEM for Transient Microwave Heating Problems, Electromagnetics, Vol. 30, Issue 1, pp. 23 - 40, 2010.

  8. P. Solin, J. Cerveny, L. Dubcova, D. Andrs: Monolithic Discretization of Linear Thermoelasticity Problems via Adaptive Multimesh hp-FEM, J. Comput. Appl. Math 234 (2010) 2350 - 2357.

  9. A.S. Telyakovskiy, G.A. Braga, S. Kurita, J. Mortensen, On a power series solution to the Boussinesq equation, Advances in Water Resources, 2010; 33(9), 1128-1129.

2009

  1. Quint, Tom; Shubik, Martin, Multistage Models of Monetary Exchange: An Elementary Discussion of Commodity Money, Fiat Money, and Credit, Part 4, ICFAI Journal of Monetary Economics 7 (1), pp. 6-67 (2009).

  2. Zevin, A. A.; Pinsky, M. A., Minimal periods of periodic solutions of some Lipschitzian differential equations. Appl. Math. Lett. 22 (2009), no. 10, 1562--1566.

  3. Vejchodsky, Tomas; Solin, Pavel, Discrete maximum principle for Poisson equation with mixed boundary conditions solved by hp-FEM. Adv. Appl. Math. Mech. 1 (2009), no. 2, 201--214.

  4. Solin, P.; Andrs, D. On scientific data and image compression based on adaptive higher-order FEM. Adv. Appl. Math. Mech. 1 (2009), no. 1, 56--68.

  5. Foias, Ciprian; Hoang, Luan; Olson, Eric; Ziane, Mohammed, The normal form of the Navier-Stokes equations in suitable normed spaces. Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), no. 5, 1635--1673.

2008

  1. Gupta, Chaitan P. A third order $m$-point boundary value problem at resonance involving a $p$-Laplacian type operator. Dynamic systems and applications. Vol. 5, 211--215, Dynamic, Atlanta, GA, 2008.

  2. Gupta, Chaitan P., A non-resonant generalized multi-point boundary value problem of Dirichlet-Neumann type involving a $p$-Laplacian type operator. Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 2, 237--248.

  3. J. Mortensen, A.S. Telyakovskiy, L. Li, D. Lockington, M. Parlange, F. Stagnitti, D.-S. Jeng, J. Selker, D. Barry, J.-Y. Parlange, Erratum to "Similarity solution of axisymmetric flow in porous media" [Adv. Water Resour., 28 (2005) 1076-1082], Advances in Water Resources, 2008; 31(12), 1764.

  4. Zevin, A. A.; Pinsky, Mark A., General solution of stability problem for plane linear switched systems and differential inclusions. IEEE Trans. Automat. Control 53 (2008), no. 9, 2149--2153.

  5. Telyakovskiy, Aleksey S. Regarding polynomial approximation for ordinary differential equations. Comput. Math. Appl. 55 (2008), no. 6, 1122--1128.

  6. Solin, Pavel; Segeth, Karel; Dolezel, Ivo, Space-time adaptive hp-FEM: methodology overview. Programs and algorithms of numerical mathematics 14, 185--200, Acad. Sci. Czech Repub. Inst. Math., Prague, 2008.

  7. Vejchodsky, Tomas; Solin, Pavel, Static condensation, partial orthogonalization of basis functions, and ILU preconditioning in the hp-FEM. J. Comput. Appl. Math. 218 (2008), no. 1, 192--200.

  8. Solin, Pavel; Avila, Jose, Equidistributed error mesh for problems with exponential boundary layers. J. Comput. Appl. Math. 218 (2008), no. 1, 157--166.

  9. Solin, Pavel; Vejchodsky, Tomas, Higher-order finite elements based on generalized eigenfunctions of the Laplacian. Internat. J. Numer. Methods Engrg. 73 (2008), no. 10, 1374--1394.

  10. Solin, Pavel; Cerveny, Jakub; Dolezel, Ivo, Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM. Math. Comput. Simulation 77 (2008), no. 1, 117--132.

  11. P. Kus, P. Solin, I. Dolezel: Solution of 3D singular electrostatics problems using adaptive hp-FEM, COMPEL, Vol. 27/3, 2008.

  12. T. Vejchodsky, P. Solin: Static Condensation, Orthogonalization of Bubble Functions, and ILU Preconditioning in the hp-FEM, J. Comput. Appl. Math., Vol 218/1, pp. 192-200, 2008.

2007

  1. M. Al-Lawatia, K. Wang, A.S. Telyakovskiy, H. Wang, A characteristic method for porous medium flow, International Journal of Computing Science and Mathematics, 2007, 1(2/3/4), 467-479.

  2. García-Huidobro, M.; Gupta, Chaitan P.; Manásevich, R. Some multipoint boundary value problems of Neumann-Dirichlet type involving a multipoint $p$-Laplace like operator. J. Math. Anal. Appl. 333 (2007), no. 1, 247--264.

  3. Gupta, Chaitan P. A non-resonant generalized multi-point boundary-value problem of Dirichelet type involving a $p$-Laplacian type operator. [A non-resonant generalized multi-point boundary-value problem of Dirichlet type involving a $p$-Laplacian type operator] Proceedings of the Sixth Mississippi State--UBA Conference on Differential Equations and Computational Simulations, 127--139, Electron. J. Differ. Equ. Conf., 15, Southwest Texas State Univ., San Marcos, TX, 2007.

  4. Gupta, Chaitan P. A priori estimates and solvability of a non-resonant generalized multi-point boundary value problem of mixed Dirichlet-Neumann-Dirichlet type involving a $p$-Laplacian type operator. Appl. Math. 52 (2007), no. 5, 417--430.

  5. Olson, Eric; Titi, Edriss S., Viscosity versus vorticity stretching: global well-posedness for a family of Navier--Stokes-alpha-like models. Nonlinear Anal. 66 (2007), no. 11, 2427--2458.

  6. Quint, Tom; Shubik, Martin, Monopolistic and Oligopolistic Banking: An Elementary Discussion of Commodity Money, Fiat Money, and Credit, Part 3, ICFAI Journal of Monetary Economics 5 (4), pp. 6-65 (2007).

  7. Quint, Thomas, A new rating system for duplicate bridge. Linear Algebra Appl. 422 (2007), no. 1, 236--249.

  8. A.S. Telyakovskiy, S. Kurita, Addendum to "Polynomial approximate solutions to the Boussinesq equation", Advances in Water Resources, 2007; 30(5), 1062-1064.

  9. Zevin, A. A.; Pinsky, M. A., Bounds for periodic solutions of vector second-order nonlinear differential equations. J. Math. Anal. Appl. 332 (2007), no. 1, 390--399.

  10. T. Vejchodsky, P. Solin: Discrete Maximum Principle for a Problem with Piecewise-Constant Coefficients Solved by hp-FEM, J. Numer. Math. 15(2007), pp. 233 - 243.

  11. T. Vejchodsky, P. Solin: Discrete Maximum Principle for Higher-Order Finite Elements in 1D, Math. Comput. 76 (2007), 1833 - 1846.

  12. P. Solin, T. Vejchodsky: A Weak Discrete Maximum Principle for hp-FEM, J. Comput. Appl. Math. 209 (2007) 54-65.

  13. M. Zitka, P. Solin, T. Vejchodsky, F. Avila: Imposing Orthogonality to Hierarchic Higher-Order Finite Elements, Math. Comput. Simul. 76 (2007) 211 - 217.

  14. P. Solin, K. Segeth: Hierarchic Higher-Order Hermite Elements on Hybrid Triangular/Quadrilateral Meshes, Math. Comput. Simul. (76) 2007, pp. 198 - 204.

  15. P. Solin, T. Vejchodsky, R. Araiza: Discrete Conservation of Nonnegativity for Elliptic Problems Solved by the hp-FEM, Math. Comput. Simul. 76 (2007) 205 - 210.

  16. P. Solin, T. Vejchodsky: Higher-Order Finite Elements Based on Generalized Eigenfunctions of the Laplacian, Int. J. Numer. Methods Engrg 73 (2007), 1374 - 1394.

2006

  1. Foias, Ciprian; Hoang, Luan; Olson, Eric; Ziane, Mohammed, On the solutions to the normal form of the Navier-Stokes equations. Indiana Univ. Math. J. 55 (2006), no. 2, 631--686.

  2. Michael, T. S.; Quint, Thomas, Sphericity, cubicity, and edge clique covers of graphs. Discrete Appl. Math. 154 (2006), no. 8, 1309--1313.

  3. Michael, T. S.; Quint, Thomas, Optimal strategies for node selection games on oriented graphs: skew matrices and symmetric games. Linear Algebra Appl. 412 (2006), no. 2-3, 77--92.

  4. Jeff Mortensen, Mark Meerschaert and Steve Wheatcraft, Fractional Vector Calculus for Fractional Advection-Dispersion, Physica A: Statistical Mechanics and its Applications, Vol. 367 (2006), pp. 181-190

  5. A.S. Telyakovskiy, M.B. Allen, Polynomial approximate solutions to the Boussinesq equation, Advances in Water Resources, 2006; 29(12),1767-1779.

  6. Wang, Hong; Zhao, Weidong; Ewing, R. E.; Al-Lawatia, M.; Espedal, M. S.; Telyakovskiy, A. S. An Eulerian-Lagrangian solution technique for single-phase compositional flow in three-dimensional porous media. Comput. Math. Appl. 52 (2006), no. 5, 607--624.

  7. Zevin, Alexandr A.; Pinsky, Mark A. Delay-independent stability conditions for time-varying nonlinear uncertain systems. IEEE Trans. Automat. Control 51 (2006), no. 9, 1482--1485.

2005

  1. Baeumer, Boris; Kurita, Satoko; Meerschaert, Mark M. Inhomogeneous fractional diffusion equations. (English summary) Fract. Calc. Appl. Anal. 8 (2005), no. 4, 371--386.

  2. Baeumer, Boris; Meerschaert, Mark M.; Mortensen, Jeff Space-time fractional derivative operators. Proc. Amer. Math. Soc. 133 (2005), no. 8, 2273--2282 (electronic).

  3. Calvert, Bruce; Gupta, Chaitan P. Existence and uniqueness of solutions to a super-linear three-point boundary-value problem. Electron. J. Differential Equations 2005, no. 19, 21 pp. (electronic).

  4. Cheskidov, Alexey; Holm, Darryl D.; Olson, Eric; Titi, Edriss S. On a Leray-$\alpha$ model of turbulence. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2055, 629--649.

  5. García-Huidobro, M.; Gupta, Chaitan P.; Manásevich, R. A Dirichelet-Neumann $m$-point BVP with a $p$-Laplacian-like operator. [A Dirichlet-Neumann $m$-point BVP with a $p$-Laplacian-like operator] Nonlinear Anal. 62 (2005), no. 6, 1067--1089.

  6. L. Li, D. Lockington, M. Parlange, F. Stagnitti, D.-S. Jeng, J. Selker, A.S. Telyakovskiy, D. Barry, J.-Y. Parlange, Similarity solution of axisymmetric flow in porous media, Advances in Water Resources, 2005; 28(10), 1076-1082.

  7. McGough, Jeff; Mortensen, Jeff; Rickett, Chris; Stubbendieck, Gregg Domain geometry and the Pohozaev identity. Electron. J. Differential Equations 2005, No. 32, 16 pp. (electronic).

  8. Quint, Thomas and Shubik, Martin, A Consumable Money: An Elementary Discussion of Commodity Money, Fiat Money, and Credit, Part 1, ICFAI Journal of Monetary Economics 3 (1), pp. 6-42 (2005).

  9. Quint, Thomas and Shubik, Martin, Gold, Fiat, and Credit: An Elementary Discussion of Commodity Money, Fiat Money, and Credit, Part 2, ICFAI Journal of Monetary Economics 3 (2), pp. 6-50 (2005).

  10. Zevin, A. A.; Pinsky, M. A. Absolute stability criteria for a generalized Lur\cprime e problem with delay in the feedback. SIAM J. Control Optim. 43 (2005), no. 6, 2000--2008 (electronic).

  11. Zevin, Alexandr A.; Pinsky, Mark A. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete Contin. Dyn. Syst. 12 (2005), no. 2, 243--250.

2004

  1. Bagchi, Sitadri; Judson, Dean; and Quint, Thomas, On the Inference of Semi-Coherent Structures from Data, Computers and Operations Research 32, pp. 2853-2874 (2005).

  2. García-Huidobro, M.; Gupta, C. P.; Manásevich, R. An $m$-point boundary value problem of Neumann type for a $p$-Laplacian like operator. Nonlinear Anal. 56 (2004), no. 7, 1071--1089.

  3. Gupta, Chaitan P. A non-resonant multi-point boundary-value problem for a $p$-Laplacian type operator. Proceedings of the Fifth Mississippi State Conference on Differential Equations and Computational Simulations (Mississippi State, MS, 2001), 143--152 (electronic), Electron. J. Differ. Equ. Conf., 10, Southwest Texas State Univ., San Marcos, TX, 2003.

  4. Gupta, Chaitan P. A non-resonant multi-point boundary value problem of Neumann-Dirichelet type for a $p$-Laplacian type operator. [A non-resonant multi-point boundary value problem of Neumann-Dirichlet type for a $p$-Laplacian type operator] Dynamic systems and applications. Vol. 4, 439--442, Dynamic, Atlanta, GA, 2004.

  5. Meerschaert, Mark M.; Mortensen, Jeff; Scheffler, Hans-Peter Vector Grünwald formula for fractional derivatives. Fract. Calc. Appl. Anal. 7 (2004), no. 1, 61--81.

  6. Telyakovskiy, A.S.; Allen, M.B., Closed-form approximate solutions to the porous-medium equation, In Miller et al.(eds.), Proc 15th Int. Conf. Computational Methods in Water Resources, Chapel Hill, 1:441-447, 2004.

  7. Quint, Thomas; Wako, Jun On houseswapping, the strict core, segmentation, and linear programming. Math. Oper. Res. 29 (2004), no. 4, 861--877.

  8. H. Wang, W. Zhao, M. Espedal, A.S. Telyakovskiy, An Eulerian-Lagrangian localized adjoint method for compositional multiphase flow in the subsurface, In Miller et al.(eds.), Proc 15th Int. Conf. Computational Methods in Water Resources, Chapel Hill, 1:495-504, 2004.

2003

  1. McGough, Jeff; Mortensen, Jeff Pohozaev obstructions on non-starlike domains. Calc. Var. Partial Differential Equations 18 (2003), no. 2, 189--205.

  2. Michael, T. S.; Quint, Thomas Sphere of influence graphs and the $L\sb \infty$-metric. Discrete Appl. Math. 127 (2003), no. 3, 447--460.

  3. Olson, Eric; Titi, Edriss S. Determining modes for continuous data assimilation in 2D turbulence. Progress in statistical hydrodynamics (Santa Fe, NM, 2002). J. Statist. Phys. 113 (2003), no. 5-6, 799--840.

  4. Wako, Jun; Quint, Thomas, Two examples in a market with two types of indivisible good. J. Oper. Res. Soc. Japan 46 (2003), no. 1, 54--65.

  5. Zevin, A. A.; Pinsky, M. A. A new approach to the Lur\cprime e problem in the theory of absolute stability. SIAM J. Control Optim. 42 (2003), no. 5, 1895--1904 (electronic).

  6. Zevin, Alexandr; Pinsky, Mark Stability criteria for linear systems with partly uncertain periodic coefficients. SIAM J. Control Optim. 42 (2003), no. 4, 1185--1197 (electronic).

  7. Zevin, Alexandr; Pinsky, Mark Exponential stability and solution bounds for systems with bounded nonlinearities. New directions on nonlinear control. IEEE Trans. Automat. Control 48 (2003), no. 10, 1799--1804.

2002

  1. Basin, Michael V.; Pinsky, Mark A. Control of Kalman-like filters using impulse and continuous feedback design. Discrete Contin. Dyn. Syst. Ser. B 2 (2002), no. 2, 169--184.

  2. Calvert, Bruce; Gupta, Chaitan P. Multiple solutions for a super-linear three-point boundary value problem. Nonlinear Anal. 50 (2002), no. 1, Ser. A: Theory Methods, 115--128.

  3. Olson, Eric Bouligand dimension and almost Lipschitz embeddings. Pacific J. Math. 202 (2002), no. 2, 459--474.

  4. Quint, Thomas; Shubik, Martin A bound on the number of Nash equilibria in a coordination game. Econom. Lett. 77 (2002), no. 3, 323--327.

  5. A.S. Telyakovskiy, G.A. Braga, F. Furtado, Approximate similarity solutions to the Boussinesq equation, Advances in Water Resources, 2002; 25(2), 191-194.

  6. A.S. Telyakovskiy}, M.B. Allen, Solving thermodynamic equilibrium constraints for vapor-liquid flows in porous media, In Hassanizadeh et al.(eds.), Proc. 14th Int. Conf. Computational Methods in Water Resources, Delft, 1:265-272, 2002.

2001

  1. García-Huidobro, M.; Gupta, C. P.; Manásevich, R. Solvability for a nonlinear three-point boundary value problem with $p$-Laplacian-like operator at resonance. Abstr. Appl. Anal. 6 (2001), no. 4, 191--213.

  2. Gupta, Chaitan P. A priori estimates and solvability of a generalized multi-point boundary value problem. Dynamic systems and applications, Vol. 3 (Atlanta, GA, 1999), 249--256, Dynamic, Atlanta, GA, 2001.

  3. Gupta, Chaitan P. A new a priori estimate for multi-point boundary-value problems. Proceedings of the 16th Conference on Applied Mathematics (Edmond, OK, 2001), 47--59 (electronic), Electron. J. Differ. Equ. Conf., 7, Southwest Texas State Univ., San Marcos, TX, 2001.

  4. Konishi, Hideo; Quint, Thomas; Wako, Jun On the Shapley-Scarf economy: the case of multiple types of indivisible goods, J. Math. Econom. 35 (2001), no. 1, 1--15.

  5. Quint, Thomas and Shubik, Martin, Games of Status, Journal of Public Economic Theory 3 (4), pp. 349-372 (2001).

  6. Quint, Thomas, Measures of powerlessness in simple games. Theory and Decision 50 (2001), no. 4, 367--383.

  7. Quint, Thomas; Shubik, Martin The core of endo-status games and one-to-one ordinal preference games. Math. Social Sci. 41 (2001), no. 1, 89--102.

  8. Zevin, A. A.; Pinsky, M. A. Monotonicity criteria for an energy-period function in planar Hamiltonian systems. Nonlinearity 14 (2001), no. 6, 1425--1432.

  9. Zevin, A. A.; Pinsky, M. A. Localization of periodic motions in systems with angle coordinates. Internat. J. Non-Linear Mech. 36 (2001), no. 4, 581--584.

2000

  1. Gupta, Ch. P.; Ntouyas, S. K.; Tsamatos, P. Ch. Existence results for multi-point boundary value problems for second order ordinary differential equations. Bull. Greek Math. Soc. 43 (2000), 105--123.

  2. Gupta, Chaitan P.; Trofimchuk, Sergei A priori estimates for the existence of a solution for a multi-point boundary value problem. J. Inequal. Appl. 5 (2000), no. 4, 351--365.

  3. Gupta, Chaitan P.; Trofimchuk, Sergej I. An interesting example for a three-point boundary value problem. Bull. Belg. Math. Soc. Simon Stevin 7 (2000), no. 2, 291--302.

  4. A.S. Telyakovskiy, M.B. Allen, Newton-like methods for fluid-phase equilibria in multiphase flows, In Bentley et al.(eds.), Proc. 13th Int. Conf. Computational Methods in Water Resources, Calgary, 1:189-193, 2000.

  5. Zevin, Alexandr A.; Pinsky, Mark A. Qualitative analysis of periodic oscillations of an earth satellite with magnetic attitude stabilization. Discrete Contin. Dynam. Systems 6 (2000), no. 2, 293--297.

1999

  1. Basin, Michael V.; Pinsky, Mark A. On impulse and continuous observation control design in Kalman filtering problem. Systems Control Lett. 36 (1999), no. 3, 213--219.

  2. Chen, S.; Foias, C.; Holm, D. D.; Olson, E.; Titi, E. S.; Wynne, S. The Camassa-Holm equations and turbulence. Predictability: quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998). Phys. D 133 (1999), no. 1-4, 49--65.

  3. Chen, S.; Foias, C.; Holm, D. D.; Olson, E.; Titi, E. S.; Wynne, S. A connection between the Camassa-Holm equations and turbulent flows in channels and pipes. The International Conference on Turbulence (Los Alamos, NM, 1998). Phys. Fluids 11 (1999), no. 8, 2343--2353.

  4. Gupta, Chaitan P.; Trofimchuk, Sergei Solvability of a multi-point boundary value problem of Neumann type. Abstr. Appl. Anal. 4 (1999), no. 2, 71--81.

  5. Gupta, C. P.; Trofimchuk, S. Robust existence of a solution for a three-point boundary value problem. Publ. Univ. Miskolc Ser. D Nat. Sci. Math. 40 (1999), 25--33.

  6. Gupta, Chaitan P.; Trofimchuk, Sergej I. A Wirtinger type inequality and a three point boundary value problem. Dynam. Systems Appl. 8 (1999), no. 1, 127--132.

  7. Michael, T. S.; Quint, T. Sphere of influence graphs in general metric spaces. Math. Comput. Modelling 29 (1999), no. 7, 45--53.

  8. Pinsky, M. A.; Zevin, A. A. Oscillations of a pendulum with a periodically varying length and a model of swing. Internat. J. Non-Linear Mech. 34 (1999), no. 1, 105--109.

1998

  1. Basin, Michael V.; Pinsky, Mark A. Impulse control in Kalman-like filtering problems. J. Appl. Math. Stochastic Anal. 11 (1998), no. 1, 1--8.

  2. Basin, Michael V.; Pinsky, Mark A. Stability impulse control of faulted nonlinear systems. IEEE Trans. Automat. Control 43 (1998), no. 11, 1604--1608.

  3. Basu, Nipa; Pryor, Richard and Quint, Thomas, ASPEN: A Microsimulation Model of the Economy, Computational Economics 12, pp. 223-241 (1998).

  4. Chen, Shiyi; Foias, Ciprian; Holm, Darryl D.; Olson, Eric; Titi, Edriss S.; Wynne, Shannon Camassa-Holm equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett. 81 (1998), no. 24, 5338--5341.

  5. Gupta, Chaitan P. A generalized multi-point boundary value problem for second order ordinary differential equations. Differential equations and computational simulations, II (Mississippi State, MS, 1995). Appl. Math. Comput. 89 (1998), no. 1-3, 133--146.

  6. Gupta, Chaitan P.; Trofimchuk, Sergej I. Solvability of a multi-point boundary value problem and related a priori estimates. Geoffrey J. Butler Memorial Conference in Differential Equations and Mathematical Biology (Edmonton, AB, 1996). Canad. Appl. Math. Quart. 6 (1998), no. 1, 45--60.

  7. Gupta, Chaitan P.; Trofimchuk, Sergej I. Existence of a solution of a three-point boundary value problem and the spectral radius of a related linear operator. Nonlinear Anal. 34 (1998), no. 4, 489--507.

  8. Pinsky, Mark A.; Basin, Michael V. On observation control using impulse feedback design. Dynam. Contin. Discrete Impuls. Systems 4 (1998), no. 1, 121--137.

1997

  1. Gupta, Chaitan P. A nonlocal multipoint boundary-value problem at resonance. Advances in nonlinear dynamics, 253--259, Stability Control Theory Methods Appl., 5, Gordon and Breach, Amsterdam, 1997.

  2. Gupta, Chaitan P.; Trofimchuk, Sergej I. A sharper condition for the solvability of a three-point second order boundary value problem. J. Math. Anal. Appl. 205 (1997), no. 2, 586--597.

  3. Quint, Thomas; Shubik, Martin, A theorem on the number of Nash equilibria in a bimatrix game. Internat. J. Game Theory 26 (1997), no. 3, 353--359.

  4. Quint, Thomas Restricted, houseswapping games. J. Math. Econom. 27 (1997), no. 4, 451--470.

  5. Quint, Thomas and Shubik, Martin, Theorem on the Number of Nash Equilibria in a Bimatrix Game, International Journal of Game Theory 26, pp. 353-359 (1997).

  6. Quint, Thomas; Shubik, Martin and Yan, Dicky, Dumb Bugs vs. Bright Noncooperative Players: A Comparison, Understanding Strategic Interaction: Essays in Honor of Reinhard Selten, ed. W. Albers et al., Springer Verlag: Berlin, pp. 185-197 (1997).

  7. Wang, Hong; Al-Lawatia, Mohamed; Telyakovskiy, Aleksey S. Runge-Kutta characteristic methods for first-order linear hyperbolic equations. Numer. Methods Partial Differential Equations 13 (1997), no. 6, 617--661.

1996

  1. Foias, C.; Olson, E., Finite fractal dimension and Hölder-Lipschitz parametrization. Indiana Univ. Math. J. 45 (1996), no. 3, 603--616.

  2. Gupta, Chaitan P. Solvability of a generalized multi-point boundary value problem of mixed type for second order ordinary differential equations. Proceedings of Dynamic Systems and Applications, Vol. 2 (Atlanta, GA, 1995), 215--222, Dynamic, Atlanta, GA, 1996.

  3. Gupta, Chaitan P.; Ntouyas, S. K.; Tsamatos, P. Ch. On the solvability of some multi-point boundary value problems. Appl. Math. 41 (1996), no. 1, 1--17.

  4. Gupta, Chaitan P., A Dirichlet type multi-point boundary value problem for second order ordinary differential equations. Nonlinear Anal. 26 (1996), no. 5, 925--931.

  5. Quint, Thomas, On One-sided vs. Two-sided Matching Games, Games and Economic Behavior 16, pp. 124-134 (1996).


Last Updated: Mon Jun 16 23:57:45 PDT 2014