1. Consider the polynomial

$$p(x) = 34x^5 + 5x^3 - 6x - 108.$$

State the degree of this polynomial and whether the leading coefficient is positive or negative.

2. Write the equation $P = 1200(0.5)^t$ in the form $P = P_0e^{kt}$. What is P_0 and what is k?

3. Suppose the table

x	0	1	2	
y	48	72	108	

consists of values for an exponential function y = f(x). Find f(-1).

4. A computer vendor has fixed costs of \$65000 per month and variable costs of \$800 per computer. The vendor sells the computers at a price of \$1400. Find a formula for the profit in terms of the quantity q sold.

(a)
$$\pi(q) = 600q - 65000$$
 (b) $\pi(t) = 2200q + 65000$

(c)
$$\pi(q) = 65000 + 600q$$
 (d) $\pi(t) = 65000 - 600q$

(e) none of these

5. Could the table

\boldsymbol{x}	1990	1992	1994	1996	1998
y	1.38	1.23	1.10	0.95	0.80

represent a linear function?

$$(a)$$
 no (b) yes

6. Which of the following functions has the largest percent growth rate?

(a)
$$P(t) = 90(1.12)^t$$

(b)
$$P(t) = 80(1.13)^t$$

(c)
$$P(t) = 70(1.14)^t$$

(d)
$$P(t) = 60(1.15)^t$$

(e)
$$P(t) = 50(1.16)^t$$

7. Let f(x) and g(x) be defined by the tables

\boldsymbol{x}	0	1	2	3	4	5
f(x)	5	9	9	5	4	13

 $\quad \text{and} \quad$

x	0	1	2	3	4	15
g(x)	4	14	13	8	5	4

Find f(x) + 3g(x+1) when x = 2.

8. Compute the average rate of change for the function

 $f(x) = e^x$ over the interval $0 \le x \le 2$.

9. Every year a company decreases its research and development budget by 5%. How many years does it take for the budget to halve?

- 10. You have been awarded most valuable employee. You may either collect \$10000 in 30 years when you reach retirement age or opt to immediately receive \$2000. Assuming a growth rate of 5.5% per year compounded yearly, which is a better option in terms of future value 30 years from now?
 - (a) collect \$10,000 in 30 years
 - (b) collect \$2000 right now
 - the future value of either option is the same (c)

11. Write the function

 $y = (2x^{-2})^3$ as a power function in the form $y = kx^p$.

- (a) $y = 8x^{-2}$ (b) $y = 2x^{6}$ (c) $y = 8x^{2}$ (d) $y = 2x^{-6}$
- (e) none of these

12. Solve for t in the equation:

$$13e^{2t} = 3(5^t).$$

13. Uranium-238, which is employed in depleted uranium anti-tank shells, has a half-life of 4.5 billion years. Write a formula for the amount of material A(t) remaining after t years, given the original amount of A_0 .

$$(a) \quad A(t) = A_0 t + 45000000000$$

(b)
$$A(t) = A_0(4500000000)$$

$$(c) A(t) = A_0 t^{4500000000}$$

(b)
$$A(t) = A_0(4500000000)^t$$

(d) $A(t) = A_0(.5)^{t/4500000000}$

$$(e)$$
 none of these